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Abstract. Rank-based cryptography provides cryptosystems that aim
to be secure against both classical and quantum computers. In the past
few years, the interest for code-based cryptography in the rank met-
ric setting has tremendously increased notably since the beginning of
the NIST post-quantum cryptography standardization process. This pa-
per introduces RBC a library dedicated to Rank-Based Cryptography
and details its design and architecture. The performances of RBC are
illustrated against comparable state of the art librairies. RBC greatly
outperforms those libraries as it is 2 to 5 times faster than NTL and 40
to 138 times faster than mpFq on the multiplication and inversion over
Fnqm which are the most critical operations when it comes to rank-based
cryptography performances. In addition, the performances of ROLLO
and RQC two rank-based cryptosystems provided by the library are re-
ported for two platforms: a desktop computer equipped with an Intel
Skylake-X CPU and an ARM Cortex-M4 microcontroller.
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Introduction

Post-quantum cryptography aims at proposing schemes that provide security
against adversaries having access to both classical and quantum computers.
Since the seminal work of McEliece in 1978 [McE78], code-based cryptogra-
phy using the Hamming metric has established itself as a serious alternative
to classical cryptography. It is based on the difficulty of the syndrome de-
coding (SD) problem which has been proven NP-complete [BMVT78]. Many
code-based cryptosystems have been proposed over the years culminating dur-
ing the NIST post-quantum standardization process [Nis16] whose round 3 fea-
tures three code-based key encapsulation mechanism (KEM) using the Ham-
ming metric [ABC+20,AMAB+20b,AMAB+20a]. Introduced in 1985 [Gab85],
the rank-metric constitutes a promising avenue for code-based cryptography.
The security of rank-based cryptography relies on the rank syndrome decoding
(RSD) problem which is the rank analogue of the syndrome decoding prob-
lem. One of the main benefits of the rank metric is that the time complex-
ity of the best known attacks against the RSD grows faster with respect to
the size of parameters than for the Hamming metric. As a consequence, rank-
based cryptosystems feature smaller ciphertext and key sizes than their Ham-
ming counterpart for identical security level. Rank-based schemes have also been



considered in the NIST post-quantum standardization process whose round 2
includes two KEM namely ROLLO [AAB+18,AAB+19a,AAB+20a] and RQC
[AAB+17b,AAB+19b,AAB+20b].

In this paper, we introduce RBC [AB+] a new C library dedicated to rank-
based cryptography which aims to promote and foster community efforts on
code-based cryptography in the rank metric setting. Rank-based cryptography
relies on binary field arithmetic for which there already exist several libraries
in the literature. Nevertheless, none of these libraries is entirely suitable for our
purpose as they don’t provide all the functionalities required by rank-based cryp-
tography. Indeed, in order to implement rank-based schemes, one needs functions
performing arithmetic of Fqm elements, arithmetic of polynomials and vector
spaces over Fqm as well as specific functions dedicated to the notion of rank
weight. In addition, existing libraries are not satisfactory when it comes to per-
formances. Some libraries are really efficient for arithmetic in Fqm while other
really shine on arithmetic in Fn

qm unfortunately no existing library is clearly su-
perior to another one when the whole spectrum of rank-based cryptography is
considered. Besides, some libraries relies on algorithms that are not the most ef-
ficient ones for the values of m and n typically used in rank-based cryptography
as they target other applications. All these considerations have motivated the
design and release of the RBC library.

Paper organization. In Section 1, we introduce the rank metric, Gabidulin and
LRPC codes as well as the ROLLO and RQC cryptosystems. Next in Section 2,
we describe the design and the architecture of our new library. We also detail
some of the algorithms provided by the library focusing on the most critical ones
with respect to performances. In Section 3, we present the performances of our
library by comparing it to the mpFq, NTL and RELIC libraries. We also showcase
its performances by reporting the execution timing of ROLLO and RQC on two
platforms: a desktop computer equipped with a Skylake-X CPU and an ARM
Cortex-M4 microcontroller. To finish, ongoing and future works related to the
RBC library are discussed.

1 Preliminaries

In this section, we present some preliminaries regarding the rank metric (Sec-
tion 1.1), Gabidulin and LRPC codes (Section 1.2) as well as the ROLLO and
RQC schemes (Section 1.3).

1.1 Rank metric overview

The rank metric has been introduced by Gabidulin in 1985 [Gab85]. Let q be
a power of a prime p, m be an integer, Fqm a finite field, B = {β1, . . . , βm}
a basis of Fqm viewed as a m-dimensional vector space over Fq and V a n-
dimensional vector space over Fqm . One can express the coordinates of x ∈ V



in B thus defining the matrix Mx ∈ Mm,n(Fq) where Mx = (xi,j) such that
xj =

∑m
i=1 xi,jβi for all j ∈ [[0, n− 1]].

M : Fn
qm ' Mm,n(Fq)

x = (x0, . . . , xn−1) 7→Mx =


x1,0 . . . x1,n−1
x2,0 . . . x2,n−1

...
...

xm,0 . . . xm,n−1


β1
β2
...
βm

Let P ∈ Fq[X] be a polynomial of degree n, one can also identify the vector
space V to the commutative ring Fqm [X]/〈P 〉 where 〈P 〉 denotes the ideal of
Fqm [X] generated by P .

Ψ : Fn
qm ' Fqm [X]/〈P 〉

x = (x0, . . . , xn−1) 7→ Ψ(x) =

n−1∑
i=0

xiX
i

For x,y ∈ V, the product z = x ·y is defined using the polynomial multiplication
in Fqm [X]/〈P 〉 namely z is the only vector such that Ψ(z) = Ψ(x) · Ψ(y). To
finish, we introduce the support and rank weight of x ∈ V which are two core
notions in rank-based cryptography.

Definition 1 (Support). The support of x = (x0, . . . , xn−1) ∈ V, denoted
Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x namely
Supp(x) = 〈x0, . . . , xn−1〉Fq

.

Definition 2 (Rank weight). The rank weight of x = (x0, . . . , xn−1) ∈ V,
denoted ‖x‖, is defined as the dimension of Supp(x) or equivalently as the rank
of the matrix Mx.

1.2 Rank metric codes

There are two main families of codes in rank metric. Gabidulin codes [Gab85]
are analogue to the Reed-Solomon codes and can be thought as the evaluation
of q-polynomials [Ore33] of bounded degree on the coordinates of a vector over
Fqm . Gabidulin codes are Fqm -linear codes that can deterministically decode up
to
⌊
n−k
2

⌋
errors. Low Rank Parity Check (LRPC) codes [GMRZ13] are Fqm-

linear codes whose parity check matrix coefficients belong to a space of small
dimension. Unlike Gabidulin codes, LRPC codes are probabilistic and as such
they feature a non-zero decoding failure probability.

Definition 3 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n, denoted [n, k]qm , is a subspace of Fn

qm of dimension k.

Definition 4 (Generator matrix). A matrix G ∈ Fm×n
qm is a generator matrix

for the [n, k]qm code C if C = {xG | x ∈ Fk
qm}.



Definition 5 (Parity-check matrix). A matrix H ∈ F(n−k)×n
qm is a parity-

check matrix for the [n, k]qm code C if C = {x ∈ Fn
qm | Hx> = 0}. The vector

Hx> ∈ Fn−k
qm is called the syndrome of x.

Definition 6 (q-polynomials). The set of q-polynomials over Fqm is the set of

polynomials with the following shape: {P (X) =
∑r

i=0 piX
qi | pi ∈ Fqm , pr 6= 0}.

The q-degree of a q-polynomial P is defined as degq(P ) = r.

Definition 7 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m. Let
g = (g0, . . . , gn−1) be a Fq-linearly independent family of vectors of Fqm . The
Gabidulin code Gg(n, k,m) is the code defined as {P (g) | degq(P ) < k} where
P (g) := (P (g1), . . . , P (gn)).

Definition 8 (LRPC codes). Let H = (hij)i∈[[1,n−k]], j∈[[1,n]] ∈ F(n−k)×n
qm be

a full-rank matrix such that its coefficients generate an Fq-subspace F of small
dimension d, i.e. F = 〈hij〉Fq and d = dim(F ). Let C be the code with parity-
check matrix H, C is called an [n, k]qm LRPC code.

1.3 The ROLLO and RQC schemes

ROLLO. ROLLO is the merge of the three cryptosystems LAKE [ABD+17a],
LOCKER [ABD+17b] and Rank-Ouroboros [AAB+17a] which all share the same
decryption algorithm for LRPC codes. Following [AAB+20a], we only consider
ROLLO-I (formerly LAKE) and ROLLO-II (formerly LOCKER) in the remain-
ing of this paper. ROLLO-I is an IND-CPA KEM whereas ROLLO-II is an IND-
CCA2 public key encryption (PKE) scheme. They are respectively described
in Figure 1 and Figure 2 from Appendix A ; we defer the interested reader to
[AAB+20a] for additional details.

RQC. RQC is an IND-CCA2 KEM build from an IND-CPA PKE construction
on top of which the HHK transform [HHK17] is performed. Unlike many other
code-based cryptosystems, the security of RQC does not rely on any code indis-
tinguishability assumption following the approach introduced by Alekhnovich
[Ale03]. We only describe the PKE version of RQC for simplicity (see Ap-
pendix A, Figure 3) and defer the reader to [AAB+20b] for additional details.

2 The RBC library

In this section, we describe the design and the architecture of our new library
(Sections 2.1 and 2.2). We also detail some algorithms provided by the library
focusing on the most critical ones with respect to performances (Section 2.3).



2.1 RBC library overview

RBC [AB+] is a C library dedicated to rank-based cryptography that focuses on
performances without sacrificing usability. It is released under the LGPL license
and can be retrieved at https://rbc-lib.org. It currently features:

• A core layer providing arithmetic for elements, vectors and polynomials over
F2m with some utility functions tailored to rank-based cryptography ;

• A code layer providing implementations for the main codes used in rank-
based cryptography namely Gabidulin codes and LRPC codes ;

• A scheme layer providing implementations for ROLLO and RQC, two rank-
based cryptosystems submitted to the NIST PQC standardization process.

Dual API. The RBC library API can be thought as a dual API targeting two
different audiences. We refer as end users people who are mainly concerned
with using the schemes provided by the library (for instance to include ROLLO
in a software, benchmark rank-metric based cryptosystems...) and we refer as
advanced users people who want to use rank-based cryptography functionalities
that are not limited to the schemes provided by the library (for instance to
implement a new rank-metric based cryptosystem, contribute to the library...).
End users should consider that the RBC library API is limited to the scheme
layer functions while advanced users should use the whole API namely functions
from the core, code and scheme layers.

Design choice regarding finite fields. The RBC library currently only sup-
ports finite fields of the form Fqm with q = 2 which are the most commonly used
finite fields in rank-metric cryptography. Regarding implementation of finite field
arithmetic, one can either provide generic algorithms suited for any value of m
or provide specific algorithms tailored for each value of m. While the first ap-
proach is superior with respect to simplicity and usability, the RBC library uses
the second approach which is better when it comes to performances. This has no
impact on usability for end users but adds some complexity for advanced users
which is partly mitigated thanks to our preprocessing and build system.

Preprocessing and build system. RBC library preprocessing and build sys-
tem is a set of python scripts facilitating development for advanced users and
allowing build customization for all users. It features a templating system for the
core layer that generates optimized code for each finite field while avoiding code
redundancy. In addition, it provides automatic source code specialization for the
code and scheme layers allowing users to write generic code that will be automat-
ically instantiated with finite fields specified in a configuration file. Doing so, one
can write generic code while keeping the possibility to use several instantiations
of its code at once. For instance, writing only one ROLLO-I implementation
and creating a program that call both ROLLO-I-128 and ROLLO-I-192 instan-
tiated respectively with F83

267 and F97
279 while avoiding any code redundancy. In

addition, the RBC preprocessing and build system allows users to customize the



build of the library by specifying several options in a configuration file. Users may
choose the targeted architecture amongst x86, x64 and x64 along with CLMUL
and AVX2 support. The preprocessing and build system will generate code ac-
cordingly by choosing the best available algorithms for the specified architecture.
Users may also choose which cryptosystems from the scheme layer they want to
include in their build thus offering the possibility to minimize the size of the
generated library files.

Tests, documentation and examples. In order to ease the use of the RBC li-
brary, a documentation is available. In addition, working examples and bench-
mark tools are provided for the cryptosystems included in the library. Unit-tests
are available for the core layer functions and KAT tests are provided for the code
and scheme layers.

Third-party implementations. The RBC library relies on several crypto-
graphic primitives that are outside the scope of rank-based cryptography such as
a pseudorandom number generator, a seedexpander, SHA2, FIPS202 and AES.
Implementations for theses primitives are retrieved from the BearSSL [Por16],
OpenSSL [Ope], PQClean [PQC], SUPERCOP [Sup] projects and [Nis16,Gue10].
In addition, the Minunit framework [Min] and the mpFq library [GT07,GT08] are
used to provide unit-tests against the library.

2.2 RBC library architecture

The RBC library introduces several structures and types corresponding to math-
ematical objects manipulated in rank-based cryptography. They are easily iden-
tified thanks to their common rbc prefix.

The following structures constitute the core layer of the RBC library:

• rbc elt implementing an element of Fqm ;

• rbc vec implementing a vector over Fqm ;

• rbc vspace implementing a vector space over Fqm ;

• rbc poly implementing a polynomial over Fqm ;

• rbc qre implementing an element of the quotient ring Fqm [X]/〈P 〉
where 〈P 〉 denotes the ideal of Fqm [X] generated by P .

These types have various dependencies one to each other. For instance,
rbc vec are constructed from rbc elt while rbc vspace and rbc poly are based
on rbc vec. In addition, the rbc qre type is built from the rbc poly one. For
each of the aforementioned types, the library provides arithmetic operations,
generation of random elements, serialization as well as utility functions tailored
to rank-based cryptography.

Additional types and functions are defined within RBC code layer:

• rbc qpoly implementing a q-polynomial over Fqm ;



• rbc gabidulin implementing a Gabidulin code ;

• rbc lrpc RSR() providing LRPC decoding.

The rbc gabidulin type relies on rbc qpoly in order to provide encoding
and decoding algorithms for Gabidulin codes. As LRPC encoding is generally
performed using rbc qre arithmetic, we provide LRPC decoding using only the
rbc lrpc RSR() function.

The scheme layer follows a different convention where the rbc prefix is replaced
by schemeName securityLevel for convenience. For instance, ROLLO-I-128
can be instantiated using the following functions: rolloI 128 kem keygen(),
rolloI 128 kem encaps() and rolloI 128 kem decaps().

2.3 RBC library algorithms

In this section, we detail some of the algorithms implemented in the RBC library
focusing on the most critical ones with respect to performances. As arithmetic
over Fn

qm is of paramount importance in rank metric, we have selected algo-
rithms that are well suited for the values of m and n typically used in rank-based
cryptography. Hereafter, we denote by the RBC supported instructions sets the
CLMUL and AVX2 instruction sets. For some operations, we provide two imple-
mentations depending on whether the RBC supported instruction sets can be
used or not. These instructions are leveraged using Intel intrinsics therefore we
refer to them with the name of the corresponding intrinsics instruction.

Algorithms related to rbc elt

The RBC library uses polynomial representation for the rbc elt therefore el-
ements e ∈ F2m are represented as vectors (e0, . . . , em−1) of size m over F2.
Operations in F2m are performed using polynomial arithmetic modulo Π where
Π is the sparse irreducible polynomial used to define F2m as F2[X]/〈Π〉. As such,
many operations on rbc elt generate unreduced elements (represented by the
rbc elt ur type) that can be transformed to rbc elt by performing reduction
modulo Π.

Multiplication. The rbc elt mul() function encompasses a polynomial multi-
plication followed by a modular reduction. Two polynomial multiplication algo-
rithms are provided depending on whether the RBC supported instruction sets
can be used or not. If the aforementioned instruction sets are supported, a text-
book polynomial multiplication accelerated by the mm clmulepi64() intrinsics
instruction is performed. Otherwise, the multiplication is implemented using the
left-to-right comb method with preprocessing ; see Algorithm 2.36 of [HMV06]
for additional details.

Inversion. The rbc elt inv() function is implemented using a version of the
Euclidean algorithm tailored for binary fields.



Squaring. The rbc elt sqr() function inserts several zeros within the repre-
sentation of an element e = (e0, e1, . . . , em−1) in order to obtain an unreduced
element e′ = (e0, 0, e1, 0, . . . , em−1) which correspond to squaring in F2m after
modular reduction of e′. If the RBC supported instruction sets are available, this
is done using the interleaving intrinsics instructions mm unpacklo epi8() and
mm unpackhi epi8() along with preprocessing ; see Algorithm 1 of [ALH10]. A

similar but less efficient algorithm is used if the aforementioned instruction sets
are not supported.

Modular reduction. The rbc elt reduce() function uses an algorithm that
exploits the sparse structure of the polynomial Π by performing reduction over
F2m one word at a time. This algorithm is tailored to each considered finite field
as Π differs for each value of m ; see Figure 2.9 and Algorithm 2.41 of [HMV06]
for an example over F2163 .

Algorithms related to rbc vec

The rbc vec is an utility type mainly used to construct the rbc poly and
rbc vspace types nevertheless it provides some core functionalities for rank-
based cryptography such as random vectors generation and rank weight compu-
tation. It is implemented as a pointer of rbc elt whose size is fixed at initial-
ization without any resize function provided.

Random vectors generation. Three ways of generating random vectors over
Fqm are provided in the RBC library:

1. The rbc vec set random() function generates a vector purely at random
by sampling each of its coordinate randomly in Fqm ;

2. The rbc vec set random full rank() function generates a full rank vector.
To do so, each coordinates of the vector is sampled randomly in Fqm then
the rank weight of the vector is computed. This process is repeated until the
vector is of full rank ;

3. The rbc vec set random from support() function generates a vector ran-
domly with each coordinate sampled from a support F of dimension d. First,
the generating family of F is copied at random positions of the vector then
the remaining coordinates are filled with random linear combinations of the
generating family of F.

Rank weight. The rbc vec get rank() function determines the rank weight
of a vector x ∈ Fn

2m by computing the rank of its associated matrix Mx using
the Gauss algorithm.



Algorithms related to rbc poly

The rbc poly type is implemented as a structure containing a rbc vec element
used to store the coefficients of the polynomial, the current degree of the poly-
nomial and a max degree value that keeps track of the size of the underlying
rbc vec element.

Multiplication. The rbc poly mul() function implements a recursive Karat-
suba algorithm. Each level of recursion splits each of the polynomials in half and
an hardcoded multiplication is used when the degrees of both polynomials is at
most one. Our implementation is inspired from the NTL library [S+01].

Inversion. The rbc poly inv() function implements polynomial inversion us-
ing the extended Euclidean algorithm.

Algorithms related to rbc vspace

Vector spaces are represented using generating families therefore the rbc vspace

type is simply a rbc vec and the corresponding subspace of Fqm is the vector
space generated by the elements stored within the rbc vec.

Direct sum. The rbc vspace directsum() function computes the direct sum
of two vector spaces A and B by concatenating their generating families.

Product. Given a vector spaces A and B of generating families (A0, . . . , Ad−1)
and (B0, . . . , Br−1), the rbc vspace product() function calculates their prod-
uct C of generating family (C0,0, . . . , Cr−1,d−1) by computing the following ele-
ments: Ci,j = Ai ×Bj for i ∈ [0, d− 1] and j ∈ [0, r − 1].

Intersection. The rbc vspace intersection() function computes the inter-
section of two vector spaces A and B by using the Zassenhaus algorithm.

Canonical basis. Some cryptosystems use vector spaces as inputs to hash
functions therefore one needs to be able to represent vector spaces in a non
ambiguous way. Given a vector space V represented by a rbc vec v, one can
compute the row echelon form of the matrix Mv associated to v by calling the
rbc vec echelonize() function thus obtaining a canonical basis of V .

Algorithms related to Gabidulin and LRPC codes

Gabidulin. The rbc gabidulin encode() function performs Gabidulin codes
encoding using a classical vector / matrix multiplication. Gabidulin codes de-
coding is realized by the rbc gabidulin decode() function using the algorithm
proposed by Loidreau in [Loi05] and later improved in [ALR18]. This algorithm
uses the q-polynomial reconstruction method and as such relies extensively on



the arithmetic of the ring of q-polynomials over F2m which is provided by the
rbc qpoly structure. More precisely, the RBC library implement the variant
described in [BBGM19] along with the ”Polynomials with lower degree” opti-
mization from section 4.4.2 of [ALR18].

LRPC. No specific structure for LRPC codes have been provided as LRPC
encoding is generally performed throught rbc qre arithmetic. LRPC decoding
is performed by the rbc lrpc RSR() function that implements the Rank Support
Recover algorithm ; see Algorithm 1 of [AAB+18]. This algorithm is similar to
the standard LRPC codes decoding algorithm described in [GMRZ13] except
that it stops after recovering the support E of the error vector e.

3 RBC library performances

In this section, we discuss the performances of the RBC library by comparing
it to the mpFq, NTL and RELIC libraries (Section 3.1). Next, we report the
performances of RQC and ROLLO as implemented in the library for two plat-
forms: a desktop computer equipped with a Skylake-X CPU (Section 3.2) and a
Cortex-M4 microcontroller (Section 3.3).

3.1 Comparison with the NTL, mpFq and RELIC libraries

The benchmarks have been performed on a machine that has 16GB of mem-
ory and an Intel® Core™ i7-7820X (Skylake-X) CPU @ 3.6GHz for which the
Hyper-Threading, Turbo Boost and SpeedStep features were disabled. The fol-
lowing libraries have been used: NTL [S+01] (version 11.4.3) along with GF2X
(version 1.3.0) and GMP (version 6.2.0), mpFq [GT07,GT08] (version 1.1) and
RELIC [AGM+] (version 0.5.0). The benchmarks have been compiled with GCC
(version 10.1.0) using the -O3 -flto -mavx2 -mpclmul -msse4.2 -maes flags.
The results have been obtained by computing the average running time from
1000 random instances. In order to minimize biases from background tasks run-
ning on the benchmark platform, each instance have been repeated 100 times
and averaged. Our benchmark is focused on the finite fields corresponding to
the different parameters sets of ROLLO and RQC. The RELIC library provides
several implementations for each arithmetic operation ; we have tested all im-
plementations while reporting only the most efficient one.

Multiplication and inversion over Fn
qm are the most critical operations when

it comes to rank-based cryptography performances. One can see from Table 1
bellow (as well as Appendix B, Tables 2 to 10) that RBC greatly outperforms
other libraries on these operations as it is 2 to 5 times faster than NTL and 40
to 138 times faster than mpFq. Overall, the RBC library is more efficient than
NTL and RELIC on all the considered operations nevertheless mpFq sometimes
outperforms RBC on arithmetic operations over Fqm . Indeed, one can see that
inversion over Fqm is about 20% faster in mpFq than in RBC. Multiplication
and squaring over Fqm feature similar performances in RBC and mpFq althought



mpFq seems more efficient than RBC when the polynomial used for reduction is
a pentanomial. However, whenever m ≥ 128, RBC outperforms mpFq for both
multiplication and squaring. This highlights some minor room for improvement
within the RBC library that will be explored in future work.

Operation RBC mpFq NTL RELIC

Multiplication over F2127 32 32 223 1 118

Inversion over F2127 5 320 3 924 7 296 7 822

Squaring over F2127 32 90 161 166

Multiplication over F113
2127 88 221 8 868 521 453 234 -

Inversion over F113
2127 1 548 059 - 5 604 693 -

Table 1: Performances in CPU cycles for F113
2127 (RQC-128 parameters)

3.2 Performances of ROLLO and RQC on Intel Skylake-X

The benchmarks have been performed on a machine that has 16GB of memory
and an Intel® Core™ i7-7820X (Skylake-X) CPU @ 3.6GHz for which the Hyper-
Threading, Turbo Boost and SpeedStep features were disabled. The schemes
have been compiled with GCC (version 10.1.0) using the -O3 -flto -mavx2

-mpclmul -msse4.2 -maes -std=c99 flags. The OpenSSL library (version 1.1.1.g)
have been used as a provider for SHA2. The results have been obtained by com-
puting the average running time from 1000 random instances. In order to min-
imize biases from background tasks running on the benchmark platform, each
instance have been repeated 100 times and averaged.

One can see from Appendix B, Tables 11 to 13 that ROLLO and RQC are
both efficient on the x64 architecture. Indeed, one can compute the Keygen, En-
caps and Decaps operations of ROLLO-I-128 and ROLLO-I-256 in respectively
less than 0.5 ms and 1 ms on our benchmark machine. ROLLO-II is slightly
less efficient as an inversion over Fn

qm have to be performed during the Key-
gen. Nonetheless all the operations of ROLLO-II-128 and ROLLO-II-256 can be
computed in respectively less than 1.5 ms and 2 ms on our benchmark machine.
RQC-128 is also fairly efficient as the Keygen, Encaps and Decaps can be com-
puted in less than 1 ms on the considered machine. However, Gabidulin decoding
become costly for bigger parameters therefore one need up to 3.5 ms to compute
the Keygen, Encaps and Decaps of RQC-256 on our benchmark machine.

3.3 Performances of ROLLO and RQC on ARM Cortex-M4

In this section, we present the performances of ROLLO and RQC as implemented
within the RBC library on microcontroller. Several implementations have been
reported in the litterature. The first one provide an implementation of ROLLO-I
leveraging the ARM SecurCore SC300 crypto co-processor [LMB+19] while the
second one studies the Encaps operation of both ROLLO and RQC on the ARM
Cortex-M0 microcontroller [ABC+19]. Hereafter, we focus on the ARM Cortex-
M4 microcontroller as suggested by the NIST and therefore compare our results



to those of the pqm4 project [KRSS20] that aims to provide a post-quantum
cryptography library for the Cortex-M4.

The benchmarks have been performed on a STM32F4 discovery board fea-
turing a 32-bit ARM-Cortex-M4 processor, 1 MByte flash memory and 196
KByte RAM. Our tests use the pqm4 benchmark scripts and as such follow
the methodology described in [KRSS20]. In particular, all cycle counts are ob-
tained at 24 MHz. For each scheme, 100 executions have been performed using
arm-none-eabi-gcc in version 10.1.0. The mean running times for ROLLO-I,
ROLLO-II and RQC are presented in Appendix C, Tables 14 to 16. No value is
reported for RQC-256 as the current implementation exceeds the available mem-
ory of the targeted platform. We defer to future work the design of a memory op-
timized implementation of RQC-256. In order to contextualize these results, the
Table 17 depicts the performances of some post-quantum KEM included in pqm4
focusing on C implementations targeting 128 bits of security (i.e. comparable to
ROLLO-I-128, ROLLO-II-128 and RQC-128). Out of fairness for projects that
have released implementations with Cortex-M4 specific optimizations (which we
did not do), we have also reported their performances in Appendix C, Table 18.

Implementations from the pqm4 project are based on the implementations
targeting the 64-bit architecture submitted to the NIST PQC standardization
process. Hereafter, we report improvements over this work using our new im-
plementations targeting 32-bit architectures. The observed running timings for
ROLLO and RQC are up to twice as fast as the ones currently reported in pqm4.

Ongoing and future work

The first version of the RBC library constitutes a solid basis to support people
implementing rank-based cryptography. Nonetheless, the RBC library is still in
its infancy and will be improved over time. In the short term, our priority is to
provide a better treatment of constant-time within the library. While some func-
tionalities have received some attention with respect to constant-time, the library
currently contains several functions that are not implemented in a constant-time
way. Our future releases will include improvements with respect to constant-time
within the library (by considering results from [AMADG21,ABC+] for example).

Some avenues worth exploring for future work include (somewhat sorted by
priority): (i) integrating additional rank-based cryptosystems such as Durandal
[ABG+19], (ii) integrating additional finite fields to RBC as the library currently
only provides the ones used by ROLLO and RQC, (iii) exploring the algorith-
mic improvements mentioned in Section 3.1 as well as (iv) exploring potential
algorithmic improvements using other representations for Fqm elements such as
normal bases. The RBC library aims to promote community efforts on rank-
based cryptography and as such contributions are welcomed. People interested
to contribute are invited to contact the library authors.
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Appendix A ROLLO and RQC

This appendix describes the ROLLO and RQC schemes. Let Snw(Fqm), Sn1,w(Fqm)
and S3n(w1,w2)

(Fqm) be defined as:

Snw(Fqm) = {x ∈ Fn
qm : ‖x‖ = w}

Sn1,w(Fqm) = {x ∈ Fn
qm : ‖x‖ = w, 1 ∈ Supp(x)}

S3n(w1,w2)
(Fqm) = {x = (x1,x2,x3) ∈ F3n

qm : ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2,

Supp(x1,x3) ⊂ Supp(x2)}

� Setup(1λ): generates and outputs the global parameters param = (n,m, d, r, P )
where P ∈ Fq[X] is an irreducible polynomial of degree n.

� KeyGen(param): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and returns
pk = h and sk = (x,y).

� Encaps(pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2 ·
h mod P . Computes K = Hash(E) and returns c.

� Decaps(sk, c): Sets s = x · c mod P , F = Supp(x,y) and E = RSR(F, s, r).
Computes K = Hash(E).

Fig. 1: Description of ROLLO-I [AAB+20a]

� Setup(1λ): generates and outputs the global parameters param = (n,m, d, r, P )
where P ∈ Fq[X] is an irreducible polynomial of degree n.

� KeyGen(param): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and returns
pk = h and sk = (x,y).

� Encrypt(µ, pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2 ·
h mod P . Computes c′ = µ⊕ Hash(E) and returns the ciphertext C = (c, c′).

� Decrypt(C, sk): Sets s = x · c mod P , F = Supp(x,y) and E = RSR(F, s, r).
Returns µ = c′ ⊕ Hash(E).

Fig. 2: Description of ROLLO-II [AAB+20a]

� Setup(1λ): generates and outputs the global parameters param =
(n, k, δ, w,w1, w2, P ) where P ∈ Fq[X] is an irreducible polynomial of degree n.

� KeyGen(param): Samples h
$← Fnqm , g

$← Snn (Fqm), (x,y)
$← S2n

1,w(Fqm),
computes the generator matrix G ∈ Fk×nqm of Gg(n, k,m), sets pk =
(g,h, s = x + h · y mod P ) and sk = (x,y), returns (pk, sk).

� Encrypt(pk, µ, θ): uses randomness θ to generate (r1, e, r2)
$← S3n

(w1,w2)
(Fqm),

sets u = r1 +h ·r2 mod P and v = mG+s · r2 +e mod P , returns c = (u,v).

� Decrypt(sk, c): returns Gg.Decode(v − u · y mod P ).

Fig. 3: Description of the PKE version of RQC [AAB+20b]



Appendix B RBC library performances

Operation RBC mpFq NTL RELIC

Multiplication over F267 60 32 448 1 175

Inversion over F267 2 670 2 327 4 099 4 347

Squaring over F267 60 32 406 208

Multiplication over F83
267 73 821 3 220 639 316 721 -

Inversion over F83
267 771 595 - 6 554 298 -

Table 2: Performances in CPU cycles for F83
267 (ROLLO-I-128 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F279 31 32 218 1 161

Inversion over F279 3 147 2 529 5 010 5 019

Squaring over F279 31 32 159 167

Multiplication over F97
279 79 367 4 801 501 370 442 -

Inversion over F97
279 989 418 - 4 889 575 -

Table 3: Performances in CPU cycles for F97
279 (ROLLO-I-192 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F297 32 32 225 1 094

Inversion over F297 4 036 3 081 5 891 6 004

Squaring over F297 32 32 187 166

Multiplication over F113
297 87 471 7 607 949 353 243 -

Inversion over F113
297 1 403 285 - 6 232 926 -

Table 4: Performances in CPU cycles for F113
297 (ROLLO-I-256 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F283 57 32 238 1 115

Inversion over F283 3 384 2 650 5 072 5 303

Squaring over F283 32 32 192 208

Multiplication over F189
283 235 746 20 555 390 621 525 -

Inversion over F189
283 3 287 743 - 12 547 730 -

Table 5: Performances in CPU for F189
283 (ROLLO-II-128 parameters)



Operation RBC mpFq NTL RELIC

Multiplication over F297 32 32 225 1 094

Inversion over F297 4 036 3 081 5 891 6 004

Squaring over F297 32 32 187 166

Multiplication over F193
297 238 539 22 797 360 642 396 -

Inversion over F193
297 3 458 307 - 15 756 672 -

Table 6: Performances in CPU cycles for F193
297 (ROLLO-II-192 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F297 32 32 225 1 094

Inversion over F297 4 036 3 081 5 891 6 004

Squaring over F297 32 32 187 166

Multiplication over F211
297 256 874 27 312 415 764 347 -

Inversion over F211
297 4 042 388 - 14 191 588 -

Table 7: Performances in CPU cycles for F211
297 (ROLLO-II-256 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F2127 32 32 223 1 118

Inversion over F2127 5 320 3 924 7 296 7 822

Squaring over F2127 32 90 161 166

Multiplication over F113
2127 88 221 8 868 521 453 234 -

Inversion over F113
2127 1 548 059 - 5 604 693 -

Table 8: Performances in CPU cycles for F113
2127 (RQC-128 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F2151 63 215 231 1 351

Inversion over F2151 7 581 6 488 9 878 10 384

Squaring over F2151 65 100 214 185

Multiplication over F149
2151 235 771 28 515 864 871 936 -

Inversion over F149
2151 3 552 081 - 10 433 894 -

Table 9: Performances in CPU cycles for F149
2151 (RQC-192 parameters)

Operation RBC mpFq NTL RELIC

Multiplication over F2181 74 435 285 1 408

Inversion over F2181 9 284 7 961 11 743 12 311

Squaring over F2181 76 114 230 237

Multiplication over F179
2181 382 830 52 895 485 1 332 610 -

Inversion over F179
2181 5 734 491 - 16 249 680 -

Table 10: Performances in CPU cycles for F179
2181 (RQC-256 parameters)



Appendix C ROLLO and RQC performances

Scheme Keygen Encaps Decaps

ROLLO-I-128 869 509 112 651 736 912

ROLLO-I-192 1 075 191 124 980 834 851

ROLLO-I-256 1 514 003 150 117 1 280 401

Table 11: Performances of ROLLO-I on intel Skylake-X in CPU cycles

Scheme Keygen Encaps Decaps

ROLLO-II-128 3 619 812 332 877 1 144 540

ROLLO-II-192 3 766 107 338 967 1 256 774

ROLLO-II-256 4 394 490 354 564 1 621 820

Table 12: Performances of ROLLO-II on Intel Skylake-X in CPU cycles

Scheme Keygen Encaps Decaps

RQC-128 366 445 530 762 2 581 487

RQC-192 798 057 1 200 596 5 739 349

RQC-256 1 165 492 1 713 963 9 466 386

Table 13: Performances of RQC on Intel Skylake-X in CPU cycles

Scheme Keygen Encaps Decaps

ROLLO-I-128 16 927 603 1 926 332 7 009 943

ROLLO-I-192 22 466 486 2 271 969 7 839 572

ROLLO-I-256 45 424 004 3 769 338 15 039 516

Table 14: Performances of ROLLO-I on ARM Cortex-M4 in cycles

Scheme Keygen Encaps Decaps

ROLLO-II-128 85 063 257 6 844 408 17 321 266

ROLLO-II-192 128 155 854 9 687 469 24 668 141

ROLLO-II-256 152 145 827 10 867 964 29 573 929

Table 15: Performances of ROLLO-II on ARM Cortex-M4 in cycles

Scheme Keygen Encaps Decaps

RQC-128 5 756 747 11 340 541 71 551 978

RQC-192 12 324 464 24 632 358 150 108 887

Table 16: Performances of RQC on ARM Cortex-M4 in cycles



Scheme Keygen Encaps Decaps

ROLLO-I 16 927 603 1 926 332 7 009 943

ROLLO-II 85 063 257 6 844 408 17 321 266

RQC 5 756 747 11 340 541 71 551 978

frodokem640shake 91 940 068 109 310 982 109 009 172

kyber512 653 616 883 740 981 642

newhope512cca 715 680 1 128 510 1 186 054

ntruhps2048509 106 694 544 2 838 551 7 766 558

ntrulpr653 56 520 202 112 440 360 168 157 956

sikep434 672 303 199 1 100 796 989 1 174 307 957

sntrup653 599 438 684 56 563 524 170 044 505

Table 17: Performances of several KEM on ARM Cortex-M4 in cycles. These
implementations are in plain C and target 128 bits security.

Scheme Keygen Encaps Decaps

frodokem640aes 48 350 369 47 135 457 46 604 758

kyber512 470 998 596 970 555 224

newhope512cca 582 009 870 621 825 352

ntruhps2048509 77 457 221 606 804 555 866

sikep434 48 264 153 78 912 215 84 277 568

Table 18: Performances of several KEM on ARM Cortex-M4 in cycles. These
implementations features Cortex-M4 specific optimizations and target 128 bits
security.


